Monday 23 November 2015

Ativan 2mg by Wyeth

Product Description
What is Ativan?
Ativan (lorazepam) is in a group of drugs called benzodiazepines (ben-zoe-dye-AZE-eh-peens). It affects chemicals in the brain that may become unbalanced and cause anxiety.



Lorazepam (trademarked as Ativan) is a high-potency, short- to intermediate-acting, 3-hydroxy benzodiazepine drug that has all six intrinsic benzodiazepine effects: anxiolytic, amnesic, sedative/hypnotic, anticonvulsant, antiemetic and muscle relaxant. Lorazepam is used for the short-term treatment of anxiety, insomnia, acute seizures including status epilepticus and sedation of hospitalized patients, as well as sedation of aggressive patients.
Lorazepam is considered to be a short-acting drug which, similar to other benzodiazepines, exerts its therapeutic, as well as adverse, effects via its interaction at benzodiazepine binding sites, which are located on GABAA receptors in the central nervous system. After its introduction in 1977, lorazepam's principal use was in treating anxiety. Among benzodiazepines, lorazepam has a relatively high addictive potential. Lorazepam also has abuse potential; the main types of misuse are for recreational purposes or continued use against medical advice. Its sedative-hypnotic and anterograde amnesia properties are sometimes used for criminal purposes.
Long-term effects of benzodiazepines include tolerance, dependence, a benzodiazepine withdrawal syndrome, and cognitive impairments which may not completely reverse after cessation of treatment; however, for most patients, cognitive impairment is not severe. Withdrawal symptoms can range from anxiety and insomnia to seizures and psychosis. Due to tolerance and dependence, lorazepam is recommended for short-term use, up to two to four weeks only. Adverse effects, including anterograde amnesia, depression and paradoxical effects such as excitement or worsening of seizures, may occur. Children and the elderly are more sensitive to the adverse effects of benzodiazepines. Lorazepam impairs body balance and standing steadiness and is associated with falls and hip fractures in the elderly.
 Medical uses:
Lorazepam has relatively potent anxiolytic effects and its best-known indication is the short-term management of severe anxiety; the FDA advises against use of benzodiazepines such as lorazepam for longer than two to four weeks. It is fast acting, and useful in treating fast onset panic anxiety
Lorazepam has strong sedative/hypnotic effects, and the duration of clinical effects from a single dose makes it an appropriate choice for the short-term treatment of insomnia, in particular in the presence of severe anxiety. It has a fairly short duration of action. Withdrawal symptoms, including rebound insomnia and rebound anxiety, may occur after only seven days' administration of lorazepam.
Lorazepam is sometimes used for individuals receiving mechanical ventilation. However, in critically ill patients, propofol has been found to be superior to lorazepam both in effectiveness and overall cost; as a result, the use of propofol for this indication is now encouraged, whereas the use of lorazepam is discouraged
Its relatively potent amnesic effect, with its anxiolytic and sedative effects, makes lorazepam useful as premedication. It is given before a general anaesthetic to reduce the amount of anaesthetic agent required, or before unpleasant awake procedures, such as in dentistry or endoscopies, to reduce anxiety, to increase compliance, and to induce amnesia for the procedure. Oral lorazepam is given 90 to 120 minutes before procedures, and intravenous lorazepam as late as 10 minutes before procedures. Lorazepam is sometimes used as an alternative to midazolam in palliative sedation. In intensive care units lorazepam is sometimes used to produce anxiolysis, hypnosis, and amnesia.
Intravenous diazepam or lorazepam are first-line treatments for convulsive status epilepticus. Lorazepam is more effective than diazepam in the treatment of status epilepticus. However, phenobarbitol has a superior success rate compared to lorazepam and other drugs, at least in the elderly.
Its marked anticonvulsant properties, and its pharmacokinetic profile, make intravenous lorazepam a reliable agent for terminating acute seizures, but it has relatively prolonged sedation after-effects. Oral lorazepam, and other benzodiazepines, have a role in long-term prophylactic treatment of resistant forms of petit mal epilepsy, but not as first-line therapies, mainly because of the development of tolerance to their effects.
Lorazepam's anticonvulsant and CNS depressant properties are useful for the treatment and prevention of alcohol withdrawal syndrome. In this setting, impaired liver function is not a hazard with lorazepam, since lorazepam does not require oxidation, hepatic or otherwise, for its metabolism.
Lorazepam is sometimes used as an alternative to haloperidol when there is the need for rapid sedation of violent or agitated individuals, but haloperidol plus promethazine is preferred due to better effectiveness and due to lorazepam's adverse effects on respiratory function. However, adverse effects such as behavioural disinhibition may make benzodiazepines inappropriate for some acutely psychotic patients. Acute delirium is sometimes treated with lorazepam, but as it can cause paradoxical effects, it is preferably given together with haloperidol. Lorazepam is absorbed relatively slowly if given intramuscularly, a common route in restraint situations.
Catatonia with inability to speak is responsive and sometimes controlled with a single 2-mg oral, or slow intravenous dose of lorazepam. Symptoms may recur and treatment for some days may be necessary. Catatonia due to abrupt or too rapid withdrawal from benzodiazepines, as part of the benzodiazepine withdrawal syndrome, should also respond to lorazepam treatment. As lorazepam can have paradoxical effects, haloperidol is sometimes given concomitantly.
It is sometimes used in chemotherapy as an adjunct to antiemetics for treating anticipatory nausea and vomiting, i.e. nausea and vomiting caused or worsened by psychological sensitization to the thought of being sick. It is also used as adjunct therapy for cyclic vomiting syndrome.
Lorazepam is also used to treat acute symptoms of vertigo and dizziness for people with Ménière's disease.
Formulation:
Pure lorazepam is an almost white powder that is nearly insoluble in water and oil. In medicinal form, it is mainly available as tablets and a solution for injection, but, in some locations, it is also available as a skin patch, an oral solution, and a sublingual tablet.
Lorazepam tablets and syrups are administered by mouth only. Lorazepam tablets of the Ativan brand also contain lactose, microcrystalline cellulose, polacrilin, magnesium stearate, and colouring agents.
Lorazepam injectable solution is administered either by deep intramuscular injection or by intravenous injection. The injectable solution comes in 1 ml ampoules containing 2 or 4 mg of lorazepam. The solvents used are polyethylene glycol 400 and propylene glycol. As a preservative, the injectable solution contains benzyl alcohol. Toxicity from propylene glycol has been reported in the case of a patient receiving a continuous lorazepam infusion. Intravenous injections should be given slowly and patients closely monitored for side effects, such as respiratory depression, hypotension, or loss of airway control.
Peak effects roughly coincide with peak serum levels, which occur 10 minutes after intravenous injection, up to 60 minutes after intramuscular injection, and 90 to 120 minutes after oral administration, but initial effects will be noted before this. A clinically relevant lorazepam dose will normally be effective for six to 12 hours, making it unsuitable for regular once-daily administration, so it is usually prescribed as two to four daily doses when taken regularly, but this may be extended to five or six, especially in the case of elderly patients who could not handle large doses at once.
Important information about Ativan:
Do not use Ativan if you are allergic to lorazepam or to other benzodiazepines, such as alprazolam (Xanax), chlordiazepoxide (Librium), clorazepate (Tranxene), diazepam (Valium), or oxazepam (Serax). This medication can cause birth defects in an unborn baby. Do not use this medicine if you are pregnant.
Before taking Ativan, tell your doctor if you have any breathing problems, glaucoma, kidney or liver disease, or a history of depression, suicidal thoughts, or addiction to drugs or alcohol.
Do not drink alcohol while taking Ativan. This medication can increase the effects of alcohol.
Avoid using other medicines that make you sleepy. They can add to sleepiness caused by lorazepam.
Ativan may be habit-forming and should be used only by the person it was prescribed for. Ativan should never be shared with another person, especially someone who has a history of drug abuse or addiction. Keep the medication in a secure place where others cannot get to it.
Adverse effects:
Any of the five intrinsic benzodiazepine effects possessed by lorazepam (sedative/hypnotic, muscle relaxant, anxiolytic, amnesic, and anticonvulsant) may be considered as adverse or side effects if unwanted. Adverse effects can include sedation and hypotension; the effects of lorazepam are increased in combination with other CNS depressant drugs.Other adverse effects include confusion, ataxia, anterograde amnesia and hangover effects. With long-term use of benzodiazepines, it is unclear whether cognitive impairments fully return to normal after cessation of therapy; cognitive deficits persist for at least six months after withdrawal, but longer than six months may be required for recovery of cognitive function. Lorazepam appears to have more profound adverse effects on memory than other benzodiazepines; it impairs both explicit and implicit memory. In the elderly, falls may occur as a result of benzodiazepines. Adverse effects are more common in the elderly, and they appear at lower doses than in younger patients. Benzodiazepines can cause or worsen depression. Paradoxical effects can also occur, such as worsening of seizures, or paradoxical excitement; paradoxical excitement is more likely to occur in the elderly, children, those with a history of alcohol abuse and in people with a history of aggression or anger problems.Lorazepam's effects are dose-dependent, meaning the higher the dose, the stronger the effects (and side effects) will be. Using the smallest dose needed to achieve desired effects lessens the risk of adverse effects.
Sedation is the side effect for which most patients complain. In a group of around 3500 patients treated for anxiety, the most common side effects complained of from lorazepam were sedation (15.9%), dizziness (6.9%), weakness (4.2%), and unsteadiness (3.4%). Side effects such as sedation and unsteadiness increased with age.Cognitive impairment, behavioural disinhibition and respiratory depression as well as hypotension may also occur.
Paradoxical effects: In some cases, paradoxical effects can occur with benzodiazepines, such as increased hostility, aggression, angry outbursts, and psychomotor agitation. These effects are seen as more common with lorazepam than other benzodiazepines. Paradoxical effects are more likely to occur with higher doses, in patients with pre-existing personality disorders and those with a psychiatric illness. Frustrating stimuli may trigger such reactions, though the drug may have been prescribed to help the patient cope with such stress and frustration in the first place. As paradoxical effects appear to be dose-related, they usually subside on dose reduction or on complete withdrawal of lorazepam.
Suicidality: Benzodiazepines may sometimes unmask suicidal ideation in depressed patients, possibly through disinhibition or fear reduction. The concern is that, though relatively nontoxic in themselves, benzodiazepines may inadvertently become facilitators of suicidal behaviour.Lorazepam should, therefore, not be prescribed in high doses or as the sole treatment in depression, but only with an appropriate antidepressant.
Amnesic effects: Among benzodiazepines, lorazepam has relatively strong amnesic effects, but patients soon develop tolerance to this with regular use. To avoid amnesia (or excess sedation) being a problem, the initial total daily lorazepam dose should not exceed 2 mg. This also applies to use for night sedation. Five participants in a sleep study were prescribed lorazepam 4 mg at night, and the next evening, three subjects unexpectedly volunteered memory gaps for parts of that day, an effect that subsided completely after two to three days' use.Amnesic effects cannot be estimated from the degree of sedation present, since the two effects are unrelated.
High-dose or prolonged parentally administered lorazepam is sometimes associated with propylene glycol intoxication.
Contraindications:
Lorazepam should be avoided in people with:
Allergy or hypersensitivity – Past hypersensitivity or allergy to lorazepam, to any benzodiazepine, or to any of the ingredients in lorazepam tablets or injections
Severe respiratory failure – Benzodiazepines, including lorazepam, may depress central nervous system respiratory drive and are contraindicated in severe respiratory failure. An example would be the inappropriate use to relieve anxiety associated with acute severe asthma. The anxiolytic effects may also be detrimental to a patient's willingness and ability to fight for breath. However, if mechanical ventilation becomes necessary, lorazepam may be used to facilitate deep sedation.
Acute intoxication – Lorazepam may interact synergistically with the effects of alcohol, narcotics, or other psychoactive substances. It should, therefore, not be administered to a drunk or intoxicated person.
Ataxia – This is a neurological clinical sign, consisting of unsteady and clumsy motion of the limbs and torso, due to failure of gross muscle movement coordination, most evident on standing and walking. It is the classic way in which acute alcohol intoxication may affect a person. Benzodiazepines should not be administered to already-ataxic patients.
Acute narrow-angle glaucoma – Lorazepam has pupil-dilating effects, which may further interfere with the drainage of aqueous humour from the anterior chamber of the eye, thus worsening narrow-angle glaucoma.
Sleep apnea – Sleep apnea may be worsened by lorazepam's central nervous system depressant effects. It may further reduce the patient's ability to protect his or her airway during sleep.
Myasthenia gravis – This condition is characterised by muscle weakness, so a muscle relaxant such as lorazepam may exacerbate symptoms.
Pregnancy and breast feeding – Lorazepam belongs to the Food and Drug Administration (FDA) pregnancy category D, which means it is likely to cause harm to the developing baby, if taken during the first trimester of pregnancy. Evidence is inconclusive whether lorazepam, if taken early in pregnancy, results in reduced intelligence, neurodevelopmental problems, physical malformations in cardiac or facial structure, or other malformations in some newborns. Lorazepam given to pregnant women antenatally may cause floppy infant syndrome in the neonate, or respiratory depression necessitating ventilation. Regular lorazepam use during late pregnancy (the third trimester), carries a definite risk of benzodiazepine withdrawal syndrome in the neonate. Neonatal benzodiazepine withdrawal may include hypotonia, reluctance to suck, apneic spells, cyanosis, and impaired metabolic responses to cold stress. Symptoms of floppy infant syndrome and the neonatal benzodiazepine withdrawal syndrome have been reported to persist from hours to months after birth. Lorazepam may also inhibit foetal liver bilirubin glucuronidation, leading to neonatal jaundice. Lorazepam is present in breast milk, so caution must be exercised about breast feeding.

0 comments:

Post a Comment